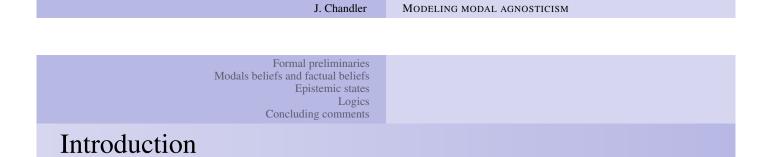
MODELING MODAL AGNOSTICISM

J. Chandler*

*Centre for Logic and Analytic Philosophy University of Leuven

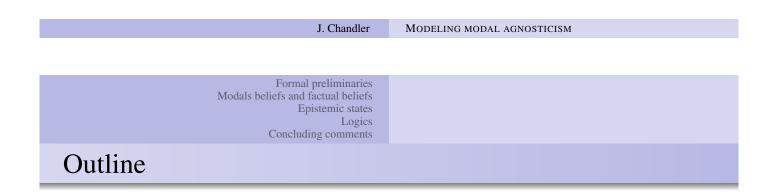
DGL 2010



- Large literature on rational acceptability of *conditionals* wrt epistemic states modeled as orderings of worlds by comparative plausibility.
- Comparatively neglected topic: rational acceptability of *modals*, of the form 'It might/must be the case that *P*'. (One of Hansson's 'ten philosophical problems in belief revision'; Hansson [2003])
- Received view: Levi [1988], whose acceptance conditions impose strong constraints on rational agents.
- In a recent *Mind* article, Sorensen [2009] puts forward considerations that suggest that these constraints are *too* strong.

Introduction

- In this talk: discussion of impact of Sorensen's view on the standard world-order model of epistemic states.
- I offer a required generalization of the standard model.
- I also briefly discuss an associated modal logic with a clear supervaluationist flavour.



Formal preliminaries

Modals beliefs and factual beliefs

Epistemic states

Logics

Concluding comments

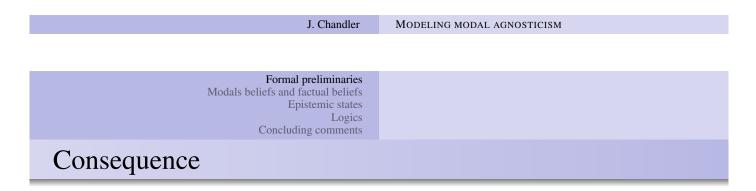
Languages

- *L*₀ Arbitrary 'factual' propositional language, generated from a finite (!) set *A* of atomic sentences using the Boolean connectives {∧, ∨, →, ¬}.
- W_0 Set of valuations of \mathcal{L}_0 .
- $\llbracket \varphi \rrbracket$ Set of all $x \in W_0$, such that $x \models \varphi$.
- \mathcal{L}_M Extension of \mathcal{L}_0 , adding a unary possibility connective \diamond .
- Intended interpretation:

'It might be the case that...' (≠ 'It might *have been*...'!!)

'There is a possibility that...' (*≠* 'There *would have been*...'!!)

• \Box Shorthand for $\neg \diamondsuit \neg$



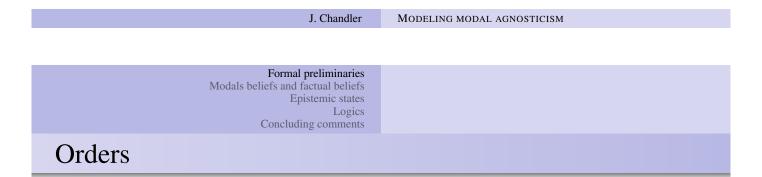
- Cn Consequence operator:
 - Function from $\wp(\mathcal{L}_M)$ to $\wp(\mathcal{L}_M)$.
 - φ ∈ Cn(Γ) iff there exist φ* ∈ L₀ and Γ* ⊆ L₀ such that
 (i) φ and Γ can be obtained from φ* and Γ* by uniform substitution of sentences.
 (ii) φ* is a classical consequence of Γ*
 - (ii) φ^* is a classical consequence of Γ^* .
- $\Gamma \subseteq \mathcal{L}$ is consistent iff there exists $\varphi \in \mathcal{L}_M$, such that $\varphi \notin Cn(\Gamma)$.

Beliefs and epistemic states

- E Set of 'epistemic states' (more on these shortly).
- B Set of 'belief sets', subsets of *L_M* that have *at least* the following properties, for all *b* ∈ B:

Closure (Cl) $Cn(b) \subseteq b$. Consistency (Con) *b* is consistent.

- Bel Belief function from **E** to **B**.
- Interpretation: gives us the beliefs that an agent is permitted to hold, given his or her epistemic state.



- A preorder ≥ on a set S is a binary relation on S that is both reflexive and transitive.
- ~ The symmetric part of a preorder \geq .
- max(S,≥) The set of maximal elements of S according to ≥, i.e. {x ∈ S : ∀x* ∈ S, x ≥ x*}.
- W_{n+1} Set of all total preorders over W_n , where $n \in \mathbb{N}_0$.
- W Union of the W_i .

Levi's suggestion

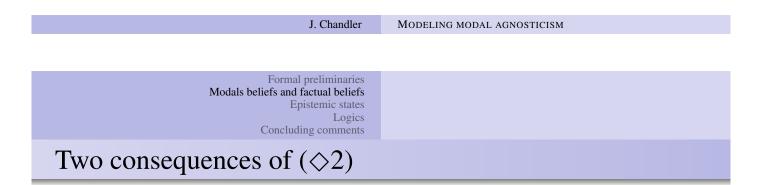
■ A pair of proposals regarding \diamond (Levi [1988]):

(\diamond 1) For all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, $\neg \diamond \neg \varphi \in \operatorname{Bel}(x)$ iff $\varphi \in \operatorname{Bel}(x)$. (\diamond 2) For all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, if $\varphi \notin \operatorname{Bel}(x)$, then $\diamond \neg \varphi \in \operatorname{Bel}(x)$.

- (\$1) seems clearly correct.
- Note in passing that, conveniently:

Observation 1: Given (Cl) and (Con), ($\Diamond 1 \Leftarrow$) entails that $\varphi \land \Diamond \neg \varphi \notin Bel(x)$, for all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$. [Proof \triangleright]

• (\$\$2), however, may be more problematic.



Trivially:

```
Observation 2: (\Diamond 1 \Leftarrow) and (\Diamond 2) jointly entail (OM). [Proof \triangleright]
```

Where:

Opinionation wrt Modals (OM) For all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, either $\Diamond \varphi \in \text{Bel}(x)$ or $\neg \Diamond \varphi \in \text{Bel}(x)$.

• Relatedly:

Observation 3: Given (Con), $(\Diamond 1 \Leftarrow)$ and $(\Diamond 2)$ jointly entail (Red). [Proof \triangleright]

Where:

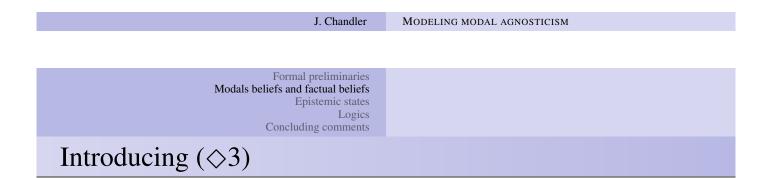
Reduction (**Red**) For all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$:

(i) If $\diamondsuit \varphi \in \text{Bel}(x)$ then $\diamondsuit \varphi \in \text{Bel}(x)$. (ii) If $\diamondsuit \Box \varphi \in \text{Bel}(x)$ then $\Box \varphi \in \text{Bel}(x)$.

Sorensen's objections

- Sorensen [2009]: (OM) and (Red) seem too strong.
- Regarding (Red):
 - *B*: There might be a possibility of still getting that grant.
 - A: There *is* a possibility that we'll still get the grant?
 - B: That's not what I said: there *might* be such a possibility...
- Regarding (OM):
 - *A*: Do you think that there's a possibility that we will get that grant?

B: I don't know. Perhaps it's already too late.



- If we grant that (\$\$\operarrow\$2\$) must go, we are quickly led to the following mild strengthening of its negation (argument omitted): If it is permissible to suspend judgment on φ, then it is optional to do so without accepting \$\$\operarrow\$¬\$\$\varphi\$.
- More formally:

(\diamond 3) For all $\varphi \in \mathcal{L}_M$, there exists $x \in \mathbf{E}$ such that $\varphi, \neg \varphi, \diamondsuit \varphi \notin \text{Bel}(x)$ iff there exists $y \in \mathbf{E}$ such that $\varphi, \neg \varphi \notin \text{Bel}(y)$ and $\diamondsuit \varphi \in \text{Bel}(y)$.

 Question: If (\$\operatorname{3}\$) is correct, what impact, if any, does this have on the standard view of epistemic states?

The standard view

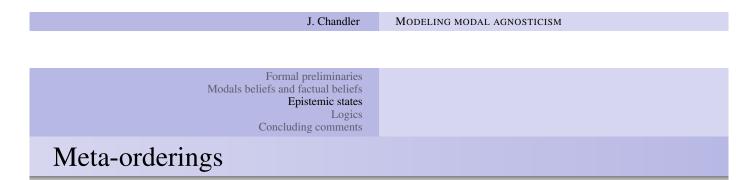
- The view in question: **Total Preorder in** W_1 (**TP**₁) **E** = W_1 .
- Equally standardly:

(Fac) For all $\varphi \in \mathcal{L}_0$ and $x \in \mathbf{E}$, $\varphi \in \text{Bel}(x)$ iff $\max(W_0, x) \subseteq \llbracket \varphi \rrbracket$.

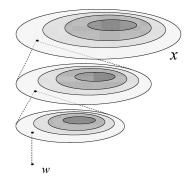
• It is easy to establish, however, that:

Observation 4: (TP₁), (Fac) and (\diamond 3) are jointly inconsistent. [Proof \triangleright]

• To keep (\Diamond 3) we'll need to enlarge **E** by weakening (TP₁).



- One straightforward move that does the job: **Total Preorder in** $W - W_0$ (**TP**) **E** = $W - W_0$.
- Illustration, where $x \in W_3$:



Defining Bel

- We then define Bel inductively.
- Basis step:
 - **(BS)** For all x in W_1 :
 - (a) For all $\varphi \in \mathcal{L}_0$, $\varphi \in \text{Bel}(x)$ if, for all $y \in \max(W_0, x)$, $y \in \llbracket \varphi \rrbracket$.
 - (b) For all $\varphi \in \mathcal{L}_M$, $\Box \varphi \in \text{Bel}(x)$, if $\varphi \in \text{Bel}(x)$.
 - (c) For all $\varphi \in \mathcal{L}_M$, $\Diamond \varphi \in \text{Bel}(x)$ if $\varphi \in \text{Cn}(\{\psi, \chi\})$ for (i) some $\chi \in \text{Bel}(x)$ and (ii) some $\psi \in \mathcal{L}_0$ such that, for some $y \in \max(W_0, x), y \in \llbracket \psi \rrbracket$.
 - (d) For all $\Gamma \subseteq \mathcal{L}_M$, $\operatorname{Cn}(\Gamma) \subseteq \operatorname{Bel}(x)$ if $\Gamma \subseteq \operatorname{Bel}(x)$.
 - (e) For all φ ∈ L_M, φ ∈ Bel(x) only if its membership can be derived from (a)-(d).
- It can be proven that:

```
Observation 5: Given (TP_1), (BS) entails (\Diamond 1) and (\Diamond 2). [Proof
```

MODELING MODAL AGNOSTICISM

 $\triangleright]$

Formal preliminaries Modals beliefs and factual beliefs Epistemic states Logics Concluding comments	
Defining Bel (ctd.)	

• (.) For all $x \in \mathbf{E}$ and $\varphi \in \mathcal{L}_M$, $x \in (\varphi)$ iff $\varphi \in \text{Bel}(x)$.

J. Chandler

• Inductive step:

(IS) For all x in W_{n+1} $(n \ge 1)$:

- (a) For all $\varphi \in \mathcal{L}_M$, $\varphi \in \text{Bel}(x)$ if, for all $y \in \max(W_n, x)$, $y \in (\varphi)$.
- (b) For all $\varphi \in \mathcal{L}_M$, $\Box \varphi \in \text{Bel}(x)$, if $\varphi \in \text{Bel}(x)$.
- (c) For all $\varphi \in \mathcal{L}_M$, $\Diamond \varphi \in \text{Bel}(x)$ if $\varphi \in \text{Cn}(\{\psi, \chi\})$ for (i) some $\chi \in \text{Bel}(x)$ and (ii) some $\psi \in \mathcal{L}_M$ such that, for some $y \in \max(W_n, x), y \in (\psi)$
- (d) For all $\Gamma \subseteq \mathcal{L}_M$, $\operatorname{Cn}(\Gamma) \subseteq \operatorname{Bel}(x)$ if $\Gamma \subseteq \operatorname{Bel}(x)$.
- (e) For all φ ∈ L_M, φ ∈ Bel(x) only if its membership can be derived from (a)-(d).
- As promised:

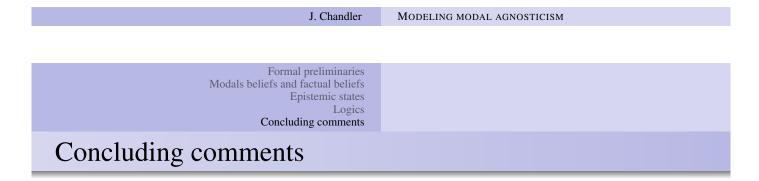
Observation 6: Given (TP), (BS) and (IS) jointly entail (\diamond 1) and (\diamond 3). [Proof \triangleright]

Logics

- We can use the two models presented here to define a 'consequence' relation on $\wp(\mathcal{L}_M) \times \mathcal{L}_M$.
- \models_M Where $\Gamma \subseteq \mathcal{L}_M$ and $\varphi \in \mathcal{L}_M$, $\Gamma \models_M \varphi$ iff $\varphi \in \text{Bel}(x)$ for all $x \in \mathbf{E}$, such that $\Gamma \subseteq \text{Bel}(x)$.
- ⊨_M looks very much like supervaluationist global consequence:
 Observation 7: Even given (TP₁), ⊨_M fails to satisfy (i) contraposition, (ii) conditional proof and (iii) reasoning by cases.
 [Proof ▷]
- Furthermore:

Observation 8: Given (TP₁), the S5 axioms are \vDash_M -valid. [Proof \triangleright]

• Question: What happens if we retreat to (TP)?



- (TP) yields a very large set of epistemic states.
- Modal agnosticism can be similarly accommodated in models that are more quantitatively parsimonious (e.g. epist. states as sets of sets... of elements of W₁).
- However:
 - (a) Such models are arguably not as *qualitatively* parsimonious (orderings + sets vs orderings all the way up)
 - (b) (TP) turns out to have some interesting applications to the issue of *left-nested conditionals*.
- But (b) is another talk altogether...

Thank you!

Questions and comments welcome: jacob.chandler@hiw.kuleuven.be

- Levi, I. [1988]. Iteration of Conditionals and the Ramsey Test. *Synthese* 76(1), pp. 49–81.
- Hansson, S.O. [2003]. Ten Philosophical Problems in Belief Revision. *Journal of Logic and Computation* 13, pp. 37–49.
- Sorensen, R. [2009]. Meta-agnosticism: Higher Order Epistemic Possibility. *Mind* 118(471):777–784.

- (1) For some $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, $\varphi \land \Diamond \neg \varphi \in \operatorname{Bel}(x)$ [for reductio]
- (2) $\Diamond \neg \varphi \in \operatorname{Bel}(x)$. [(1), (Cl)]
- (3) If $\varphi \in \text{Bel}(x)$, then $\Diamond \neg \varphi \notin \text{Bel}(x)$ [($\Diamond 1 \Leftarrow$), (Con)]
- (4) $\varphi \notin \text{Bel}(x)$ [(2), (3)]
- (5) $\varphi \in \text{Bel}(x)$ [(1), (Cl)]

 $[Back \triangleleft]$

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 2

- (1) For all $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, either (i) $\neg \varphi \in \text{Bel}(x)$ or (ii) $\neg \varphi \notin \text{Bel}(x)$
- (2) Assume (i)
- (3) $\neg \diamondsuit \varphi \in \text{Bel}(x) [(\diamondsuit 1 \Leftarrow)]$
- (4) Assume (ii)
- (5) $\Diamond \varphi \in \operatorname{Bel}(x) [(\Diamond 2)]$

 $[Back \triangleleft]$

- (1) For some $\varphi \in \mathcal{L}_M$ and $x \in \mathbf{E}$, $\Diamond \Diamond \varphi \in \text{Bel}(x)$ [for CP]
- (2) $\neg \Diamond \neg \neg \Diamond \phi \notin \operatorname{Bel}(x)$ [(1), (Cl), (Con)]
- (3) $\neg \diamondsuit \varphi \notin \text{Bel}(x)$ [(2), contrapositive of ($\diamondsuit 1 \Leftarrow$)]
- (4) $\Diamond \varphi \in \text{Bel}(x)$ [(3), ($\Diamond 1 \Leftarrow$) and ($\Diamond 2$) via (OM)]

 $[Back \triangleleft]$

MODELING MODAL AGNOSTICISM

Proof of Observation 4

(1) Let $\mathcal{A} = \{\varphi\}$, with $w, w^* \in W_0$, such that $w \models \varphi$ and $w^* \models \neg \varphi$

J. Chandler

- (2) There exists a *unique* $x \in \mathbf{E}$ such that $\varphi, \neg \varphi \notin \text{Bel}(x)$: the $x \in \mathbf{E}$, such that $w \sim_x w^*$ [(1), (TP₁), (Fac)]
- (3) It isn't the case that $\Diamond \varphi \in \text{Bel}(x)$ and $\Diamond \varphi \notin \text{Bel}(x)$
- (4) (\diamond 3) is false [(2), (3)]

 $[Back \triangleleft]$

- (\Diamond 1): Given (TP₁), (BS)(b) is the only way to secure membership of Bel(*x*) for any $\Box \varphi$, such that $\varphi \in \mathcal{L}_M$, for any $x \in \mathbf{E}$. The desired conclusion then follows from (BS)(e).
- (\Diamond 2): We first define a function $d : \mathcal{L}_M \mapsto \mathbb{N}_0$ as follows:
 - (i) For all $\varphi \in \mathcal{L}_0$, $d(\varphi) = 0$
 - (ii) For all $\varphi \in \mathcal{L}_M$, $d(\neg \varphi) = d(\varphi)$
 - (iii) For all $\varphi, \psi \in \mathcal{L}_M, d(\varphi \lor \psi) = d(\varphi \land \psi)$ = $d(\varphi \rightarrow \psi) = \max\{d(\varphi), d(\psi)\}$
 - (iv) For all $\varphi \in \mathcal{L}_M$, $d(\Diamond \varphi) = d(\varphi) + 1$

We now define:

$$\mathcal{L}_n \coloneqq \{ \boldsymbol{\varphi} \in \mathcal{L}_M : d(\boldsymbol{\varphi}) \leq n \}$$

Note that $\mathcal{L}_M = \bigcup \mathcal{L}_n, n \in \mathbb{N}_0$.

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 5 (ctd.)

We also define the corresponding restricted version of (\Diamond 2):

 $(\mathcal{L}_n \diamond 2)$ For all $\varphi \in \mathcal{L}_n$ and all $x \in \mathbf{E}$, if $\varphi \notin \text{Bel}(x)$, then $\diamond \neg \varphi \in \text{Bel}(x)$.

We first prove $(\mathcal{L}_0 \diamond 2)$. Assume for CP that $\varphi \notin \text{Bel}(x)$, where $\varphi \in \mathcal{L}_0$. It follows, given the contrapositive of (BS)(a), that, for some $y \in \max(W_0, x)$, $y \in [\neg \varphi]$. From this, given (BS)(c), we recover the fact that $\diamond \neg \varphi \in \text{Bel}(x)$.

We now prove that if $(\mathcal{L}_n \diamond 2)$, then $(\mathcal{L}_{n+1} \diamond 2)$, where $n \in \mathbb{N}_0$. Consider an arbitrary $\varphi \in \mathcal{L}_{n+1}$. Let DNF (φ) denote its DNF, i.e. its equivalent disjunction of conjunctions of sentences ψ_i , such that (i) ψ_i is a literal or (ii) $\psi_i = \Diamond \chi$ or $\psi_i = \neg \Diamond \chi$, where $\chi \in \mathcal{L}_n$:

 $\text{DNF}(\boldsymbol{\varphi}) = (\boldsymbol{\psi}_1, \wedge \ldots) \lor (\boldsymbol{\psi}_n, \wedge \ldots) \lor \ldots$

Proof of Observation 5 (ctd.)

Call a sentence 'indefinite' iff neither it nor its negation is in Bel(x).

 $\varphi \notin \text{Bel}(x)$ iff either (a) φ is definite and $\neg \varphi \in \text{Bel}(x)$ or (b) φ is indefinite.

If (a), it immediately follows, by (IS)(c), that $\Diamond \neg \varphi \in \text{Bel}(x)$.

Assume $(\mathcal{L}_n \diamond 2)$. It follows from that, alongside $(\diamond 1)$, that, for all $\chi \in \mathcal{L}_n$ and $x \in \mathbf{E}$, either $\diamond \chi \in \text{Bel}(x)$ or $\neg \diamond \chi \in \text{Bel}(x)$ (see proof of Obs 2).

In other words: all non-literal conjuncts in $DNF(\phi)$ are definite.

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 5 (ctd.)

So if (b), then $DNF(\varphi)$ must (i) include at least one indefinite disjunct, which itself, by the previous remark, must contain at least one indefinite *literal* conjunct, and (ii) only include definite disjuncts whose negation is in Bel(x).

Now assume (b) and consider $\neg DNF(\varphi)$. This will be equivalent to a conjunction α of disjunctions that either (i) contain an indefinite literal disjunct, namely the negation of the corresponding conjunct in $DNF(\varphi)$, or (ii) are members of Bel(x):

 $\alpha = (\neg \psi_1, \lor \ldots) \land (\neg \psi_n, \lor \ldots) \land \ldots$

Proof of Observation 5 (ctd.)

Let Γ denote the set of indefinite literals in α . Since $DNF(\varphi) \notin Bel(x)$, it follows that the disjunction of their negations isn't in Bel(x). It then follows that there exists $y \in max(W_0, x)$ such that $y \in [\![\wedge \Gamma]\!]$.

Now it is easy to show that α is a joint consequence of $\wedge \Gamma$ and the conjunction of the conjuncts in α that are members of Bel(*x*) (if any).

It then follows from (BS)(c) that $\Diamond \alpha \in \text{Bel}(x)$ and hence, by (BS)(d), that $\Diamond \neg \varphi \in \text{Bel}(x)$.

We can therefore conclude that $(\mathcal{L}_{n+1} \diamond 2)$ holds.

 $[Back \triangleleft]$

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 6

(\diamond 1): Call ($W_n \diamond 1$), the restriction of (\diamond 1) to W_n . We saw in Observation 5 that (BS) entails that ($W_1 \diamond 1$) holds, given (BS)(e) and the fact that (BS)(b) is the only way to secure membership of $\Box \varphi$ when $x \in W_1$. For similar reasons, (IS) entails that ($W_n \diamond 1$), for $n \ge 2$.

(\Diamond 3 ⇐): We prove this for $x \in W_n$, where $n \ge 2$; the proof for n = 1 is analogous (simply swap [.] for (.)).

Assume for CP that there exists $y \in W_n$ such that $\varphi, \neg \varphi \notin Bel(y)$ and $\Diamond \varphi \in Bel(y)$.

It follows from (IS)(a) and the fact that $\varphi \notin \text{Bel}(y)$, that there exists $x \in W_{n-1}$ such that $x \in \max(W_{n-1})$ and $x \notin (|\varphi|)$.

Proof of Observation 6 (ctd.)

There exists $y^* \in W_n$ such that $\max(W_{n-1}, y^*) = \{x\}$, as well as $z \in W_{n+1}$ such that $\max(W_n, z) = \{y, y^*\}$. Since, as is easily verified, $\Diamond \varphi \notin \text{Bel}(y^*)$ and since $\varphi, \neg \varphi \notin \text{Bel}(y)$, it follows that $\varphi, \neg \varphi, \Diamond \varphi \notin \text{Bel}(z)$. ($\Diamond 3 \Rightarrow$): Assume for CP that there exists $y \in W_n$ such that $\varphi, \neg \varphi, \Diamond \varphi \notin \text{Bel}(y)$. From the fact that $\neg \varphi \notin \text{Bel}(y)$, it follows that, for some $x \in W_1$, $\neg \varphi \notin \text{Bel}(x)$. Indeed, assume for reductio, that there is no such x. It then follows that $\neg \varphi \in \text{Bel}(y)$, contrary to our initial assumption, since if for all $x \in W_n$, $\neg \varphi \in \text{Bel}(x)$, then, trivially, for all $x^* \in W_{n+1}$, for all $x \in \max(W_n, x^*)$, $x \in (\neg \varphi)$ and hence by

(IS)(a), $\neg \phi \in \text{Bel}(x^*)$.

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 6 (ctd.)

Either (i) $\varphi \in \text{Bel}(x)$ or (ii) $\varphi \notin \text{Bel}(x)$.

Assume (i). Now:

Observation 9: If there exists $x \in W_n$ $(n \ge 1)$ such that $\varphi \in Bel(x)$, then there exists $x^* \in W_{n+1}$ such that $\varphi \in Bel(x^*)$.

Indeed, consider any x^* such that $\max(W_n, x^*) = \{x\}$. So, by Obs 9, there exists $y^* \in W_n$ such that $\varphi \in \text{Bel}(y^*)$. There also exists $z \in W_{n+1}$, such that $\max(W_n, z) = \{y, y^*\}$. Since $\varphi \in \text{Bel}(y^*)$, by (IS)(c), $\Diamond \varphi \in \text{Bel}(z)$. Since $\varphi, \neg \varphi \notin \text{Bel}(y)$, by (IS), $\varphi, \neg \varphi \notin \text{Bel}(z)$. Assume (ii). By ($\Diamond 2$), which holds for all $x \in W_1$ (see Observation 5), since $\neg \varphi \notin \text{Bel}(x)$, $\Diamond \varphi \in \text{Bel}(x)$.

 $[Back \triangleleft]$

- (i) For all $\varphi \in \mathcal{L}_M$, $\varphi \models_M \Box \varphi$. However, it is not the case that for all $\varphi \in \mathcal{L}_M$, $\Diamond \neg \varphi \models_M \neg \varphi$. Countermodel: see epistemic state *x* in proof of Observation 4.
- (ii) For all $\varphi \in \mathcal{L}_M$, $\varphi \models_M \Box \varphi$. However, it is not the case that for all $\varphi \in \mathcal{L}_M$, $\models_M \varphi \rightarrow \Box \varphi$. Countermodel: same as above.
- (iii) For all $\varphi \in \mathcal{L}_M$, $\varphi \models_M \Box \varphi \lor \Box \neg \varphi$ and $\neg \varphi \models_M \Box \varphi \lor \Box \neg \varphi$. However, it is not the case that for all $\varphi \in \mathcal{L}_M$, $\varphi \lor \neg \varphi \models_M \Box \varphi \lor \Box \neg \varphi$. Countermodel: same as above. \Box

 $[Back \triangleleft]$

J. Chandler MODELING MODAL AGNOSTICISM

Proof of Observation 8

Proof of Observation 8 (ctd.)

- $\vDash_M \mathbf{T}$: By (\diamond 2), either $\varphi \in \text{Bel}(x)$ or $\diamond \neg \varphi \in \text{Bel}(x)$ and hence, by (BS)(d) $\Box \varphi \rightarrow \varphi \in \text{Bel}(x)$.
- $\vDash_{M} 5: By (OM), either \Diamond \varphi \in Bel(x) \text{ or } \neg \Diamond \varphi \in Bel(x). By (BS)(b) \text{ and} (IS)(b), if \Diamond \varphi \in Bel(x), then \Box \Diamond \varphi \in Bel(x). Therefore, by (BS)(d), \Diamond \varphi \rightarrow \Box \Diamond \varphi \in Bel(x). \Box$

[Back ⊲]

J. Chandler MODELING MODAL AGNOSTICISM