Introduction Logics with gaps: K3 Logics with gluts: LP

Introduction Logics with gaps: K3 Logics with gluts: LP

Introduction

- Last session: a set of trivalent semantics accomodating the possibility of 'gappy' or 'glutty' sentences.
- This time: some tableau methods for testing for validity.
- SV validates same inferences as classical logic so no need for new methods there.
- Here, systems for:
 - K3
 - LP
- For systems for Ł3 and RM3, see Priest (2008, p. 150-151).
- These systems are demonstrably sound and complete wrt the relevant semantics (proof omitted; see Priest).

ELEMENTS OF DEDUCTIVE LOGIC J. Chandler

General comments Introduction Logics with gaps: K3 Tableaux for K3 Examples

General comments (ctd.)

• In our gappy trivalent semantics: false isn't the only non-designated value!

 \Rightarrow Find valuations such that the premises are true and the conclusion is either (i) false or (ii) neither true nor false.

- To evaluate $\varphi_1, \ldots, \varphi_n \vdash \psi$, we start the tree with:
 - $\varphi_1, +$. . . $\varphi_n, +$ ψ , –

Where:

- '+' ='designated' (1)
- '-' = 'non-designated' (0 or i)

ELEMENTS OF DEDUCTIVE LOGIC

11. Gaps & Gluts: tableau methods

J. Chandler KUL 2012 ELEMENTS OF DEDUCTIVE LOGIC J. Chandler

General comments

- If you can do tableaux for classical sentential logic, this will be easy: just a few small differences.
- Tableau method: find valuations such that the premises have a designated value and the conclusion does not.
- Classical semantics: find valuations such that the premises are true and the conclusion is *false*.
- So to evaluate $\varphi_1, \ldots, \varphi_n \vdash \psi$, we start the tree with:

- φ_n
- $\sim \psi$

General comments (ctd.)

- The closing rules also change...
- In classical semantics: the tableau closes iff we have, for any sentence φ, both φ and ~ φ on the same branch.
- Here: the branch closes iff we have, for any sentence φ
 - (i) both φ , + and φ , on the same branch or
 - (ii) both φ , + and ~ φ , + on the same branch
- Regarding (i): no sentence can be assigned both 1 and either 0 or *i* (because valuations only assign one value).
- Regarding (ii): no sentence can be such that both it and its negation are assigned 1 (because of the truth tables for negation).

General comments (ctd.)

- Countermodels: if a branch *b* fails to close, for every atomic sentence φ
 - if φ , + is on *b*, then $v(\varphi) = 1$
 - if $\sim \varphi$, + is on *b*, then $v(\varphi) = 0$
 - Otherwise $v(\phi) = i$

Note: we never have both φ , + and ~ φ , + on an open branch.

• Tip: if you have a *prima facie* countermodel, double-check that it *is* indeed one, using the truth tables.

J. Chandler	ELEMENTS OF DEDUCTIVE LOGIC		J. Chandler	ELEMENTS OF DEDUCTIVE LOGIC	
Introduction Logics with gaps: K3 Logics with gluts: LP	General comments Tableaux for K3 Examples		Introduction Logics with gaps: K3 Logics with gluts: LP	General comments Tableaux for K3 Examples	
Tableaux for K3: negation		Tableaux for K3:	conjunction		
• With the new t-tables come n • Negation: $\begin{array}{c c} f_{\sim} \\ \hline 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \end{array} \sim \varphi,$	ew tableau rules + $\sim \varphi, -$ \downarrow $\varphi, -$	• Conjunction: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c} arphi\&arphi, , \ arphi, + \ arphi, + \ arphi, + \end{array} \end{array}$	+	$\varphi \& \psi, -$ $\varphi, \psi, -$
Table for \sim Ru	le #1 Rule #2	Table for &	Rule	e #3	Rule #4
$\frac{f_{\sim\sim}}{1}$					

Table for ~~

0 0

i i

(Branch *b* closes iff either (i) φ , + and φ , - on *b* or (ii) φ , + and ~ φ , + on *b*.)

Introduction General comments Logics with gaps: K3 Tableaux for K3 Logics with gluts: LP Examples

Example 2: open tableau

• We show that $p \nvDash_{K3} q \lor \neg q$:

$$p,+$$

 $\sqrt{q} \vee \sim q,-$
 $q,-$
 $\sim q,-$

Countermodel: v(p) = 1 and v(q) = i(If *b* open, then (i) if φ , + is on *b*, then $v(\varphi) = 1$, (ii) if ~ φ , + is on *b*, then $v(\varphi) = 0$, (iii) otherwise $v(\varphi) = i$)

ELEMENTS OF DEDUCTIVE LOGIC

General comments

- Tableau method: find valuations such that the premises have a designated value and the conclusion does not.
- Classical semantics: find valuations such that the premises are *true* and the conclusion is false.
- In our glutty trivalent semantics: true isn't the only designated value!

 \Rightarrow Find valuations such that the premises are *either* (*i*) *true or* (*ii*) *both true and false* and the conclusion is false.

- Again, we use '+' and '-'.
- But this time, since *i* is designated:
 - '+' = 'designated' stands for 1 or i
 - '-' ='non-designated' stands only for 0

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction Logics with gaps: K3 Logics with gluts: LP

aps: K3 luts: LP General comments

LP vs K3

• Question 1:

Why doesn't the tableau close here if we have both φ , + and ~ φ , + on the same branch, like it does for K3?

Answer:

Because here, '+' stands for 'either 1 or *i*' and we can have $v(\varphi) = i = v(\sim \varphi)$.

• Question 2:

Why, in K3, doesn't the tableau close if we have both φ , – and ~ φ , – on the same branch, like it does here?

Answer:

Because, in K3, '-' stands for 'either 0 or *i*' and we can have $v(\varphi) = i = v(\sim \varphi)$.

General comments (ctd.)

- Again, the closing rules differ from those for classical logic.
- Here: the branch closes iff we have, for some sentence φ

J. Chandler

- (i) both φ , + and φ , on the same branch *or*
- (ii) both φ , and ~ φ , on the same branch
- Regarding (i): no sentence can be assigned both 1 and either 0 or *i* (because valuations only assign one value).
- Regarding (ii): no sentence can be such that both it and its negation are assigned 0 (because of the truth tables for negation).
- LP therefore differs from K3 wrt (ii)...

- Aside from this: same rules for branches.
- Countermodels: if a branch *b* fails to close, for every atomic sentence φ
 - if φ , is on b, then $v(\varphi) = 0$
 - if $\sim \varphi$, is on *b*, then $v(\varphi) = 1$
 - Otherwise $v(\varphi) = i$

Note: we never have both φ , – and ~ φ , – on an open branch.

Example 1: closed tableau

• We show that $p \vdash_{LP} q \lor \neg q$:

 $\begin{array}{c} p,+\\ \checkmark q \lor \sim q,-\\ \\ q,-\\ \sim q,-\\ \times \end{array}$

(Branch *b* closes iff either (i) φ , + and φ , - on *b* or (ii) φ , - and ~ φ , - on *b*.)

• We show that $p \supset q, q \supset r \nvDash_{LP} p \supset r$

then $v(\varphi) = 1$, (iii) otherwise $v(\varphi) = i$)

Next session

ELEMENTS OF DEDUCTIVE LOGIC

- Topic: introducing predicate logic.
- Reading: Restall, Ch. 8, up to, but excluding, 'Translation'.

J. Chandler

References

• Priest, G. (2008). *An Introduction to Non-Classical Logic*. Cambridge: CUP.

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC